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Abstract
Hat problems are a staple in recreational mathematics. Usually these problems

involve people with hats and they can see everyone else’s hats but theirs, or
person 1 only seeing person 2’s hat, person 2 seeing only person 3’s hat and so
on, or people stand in a circle and can only see the hats of the people standing
immediately next to them. These three situations can be represented by a graph
that we call a sight graph. For example, the first case above would be a complete
graph. Many papers prior have explored hat problems with differing sight graphs
and this continues such tradition. We prove that for a sight graph of Km,n and
three hat colors, then the number of guaranteed answers is bmin(m,n)

2 c. A similar
problem is the Line of Sages problem, presented by Tanya Khovanova [1]. We
explore the generalized version of varying number of colors and people and we
have shown that for any number of colors and three people, there is a strategy to
guarantee two correct answers.
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1 Introduction
In general, hat problems involve people who are wearing hats of different colors but are
not able to see their own hat. In one way or another, each person will try to guess their
own hat color based on some information given. The variety comes in the goals and
knowledge of each person. There are hat problems where the people wearing hats attempt
to maximize the correct answers most of the time. Others require that no one person
will answer incorrectly given that they are able to pass. By nature, some hat problems
require probabilistic strategies, whereas some require deterministic strategies. The website,
https://www.cs.umd.edu/ gasarch/TOPICS/hats/hats.html, is a compilation of various
papers on hat problems.

There are two types of hat problems that this paper focuses on. First are a set of hat problems
where the people who are wearing hats can see other people’s hats but cannot see their own.
Which person can see who can vary. The sight of each person can be represented by a graph
whose vertices represent each person and an edge shows that the two people can see each
other. This is called a sight graph. There has been some work on hat problems with a variety
of sight graphs. Our work continues this tradition. Finally, we explore variation of the Line
of Sages problem, propose by Tanya Khovanova [1].

1.1 2 People, 2 Color
1.1.1 Problem Statement

There are 2 people facing each other. Each person is wearing a red hat or a blue hat. Each
person can see the other person’s hat but not their own. Each person guesses their hat color
simultaneously. Develop a strategy that guarantees the most correct guesses. The strategy
must be deterministic; in other words, it can’t be random.

1.1.2 Solution
The solution to this problem is that one person, person 0, will guess the hat color of the
other person, person 1. Person 1 will guess the opposite color of person 0’s hat. Either they
are wearing the same color, in which case person 0 is correct, or they are wearing different
colors, in which case person 1 is correct. Therefore, this strategy guarantees that one person
will always be correct.

Theorem 1.1
The best strategy for the 2 people facing each other and 2 color problem guarantees 1
correct answer.

Proof. We will prove that the best strategy guarantees at least 1 correct answer, and that it
cannot get more than 1 correct answer.

Lower bound: The strategy described above guarantees 1 correct answer, so the best
strategy guarantees at least 1 correct answer.
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Upper bound: Consider an arbitrary strategy. Fix the hat color of person 0. By do-
ing so, the answer of person 1 is fixed as well, since their strategy is deterministic. Person 1
can be wearing either a red hat or a blue hat, but person 1 also guesses the same color in
both scenarios. So, in one of those configurations, person 1 will guess incorrectly. Therefore,
no strategy can guarantee more than 1 correct answer.

1.2 Definitions andNotation
1.2.1 Sight Graphs

The hat problems explored in this paper have a corresponding sight graph. A sight graph
represents the information given to each person. Each vertex in a sight graph represents a
person in the hat problem. Adjacent vertices represent which hats the person can see.

Definition 1.2 (Sight Graph)
Formally, given a sight graph G = (V,E), where G is undirected, if {x, y} ∈ E, then
person x and person y can see each other’s hats.

Example 1.3 (Sight Graph for 2 people, 2 color)
The sight graph for the 2 people, 2 color problem is K2. Each person may see each other’s
hat, but not their own.

Figure 1: K2

1.2.2 HAT notation
A hat problem consists of a sight graph, the number of colors, and the order in which people
answer. When everyone answers simultaneously, a person’s answer is not influenced by the
other people’s answers. This type of hat problems will be denoted by HATS(G, k), where G
is the sight graph and k is the number of colors. For example, the 2 people, 2 color problem
would be denoted by HATS(K2, 2). Note that HATS(G, k) is also a function which outputs
the maximum amount of guaranteed correct answers for some specific hat problem. To
formalize, we shall define other functions.

Notation 1.4 (h(i) and g(i))
h(i), where i is a vertex in the sight graph (equivalently a person in the problem), is the
hat color of vertex i.

g(i), where i is a vertex in the sight graph, is the answer of vertex i.

h(i) and g(i) return nonnegative integers, as each color can be matched with a unique number.
For example, if there are k colors, then the colors are 0, 1, · · · , k − 1. Also, the equation
g(i) = h(i) means that vertex i guesses correctly.
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Definition 1.5 (Strategy)
A strategy, s, is an algorithm to determine the value of g(i). In a strategy, the value
of g(i) can only change if h(a) also changes, for some vertex a adjacent to i. In other
words, there is no random guessing allowed, as a person will always answer the same
color if that person sees the same thing. s(c), where c is a configuration of hat colors, is
the number of correct answers produced by s.

We will use the 2 person, 2 color problem to give an example of this notation. Let the person
who guesses the same color as the other person’s hat be a0, and let the other person be
a1. Also, let the color red be 0, and let blue be 1. The strategy, s, for that problem is
g(a0) = h(a1) and g(a1) ≡ h(a0) + 1 (mod 2). This guarantees that one person is always
correct. So, s(c) = 1 for all configurations c. Additionally, no strategy can guarantee more
than 1 correct answer. Therefore, HATS(K2, 2) = 1.

Notation 1.6 (HATS(G, k))
Let Σ be the set of all strategies applicable to HATS(G, k), and let χ be the set of all hat
configurations applicable to HATS(G, k).

Formally,
HATS(G, k) = max

s∈Σ
(min
c∈χ

(s(c))).

2 Background
2.1 Hat Problems on Complete Graphs, AnyNumber of Colors
2.1.1 n people, 2 color

A generalization of the first problem, HATS(K2, 2), is HATS(Kn, 2). In a Kn graph, each
person can see every other person. For each pair of people, the strategy for HATS(K2, 2) can
be applied. This guarantees 1 correct answer for each every pair of people. Since there are
exactly bn2 c pairs, this strategy guarantees bn2 c correct answers.

Theorem 2.1 (HATS(Kn, 2))

HATS(Kn, 2) = bn2 c

Proof. Lower bound: The strategy of pairing people yields bn2 c correct answers. Therefore,
HATS(Kn, 2) ≥ bn2 c.

Upper bound: Given an arbitrary strategy, consider an arbitrary person, Ada. Fix all the
hat colors apart from Ada’s. By doing so, Ada’s answer is fixed. Therefore, Ada is correct in
exactly one of the two possible cases for her hat color. Therefore, across all 2n configuration
of hat colors, Ada is correct in 1

2 of them, or 2n−1 times. Thus, Ada is incorrect the remaining
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2n−1 of the configurations. Since there are n people, the total number of incorrect answers
for any given strategy is n(2n−1).

By the pigeonhole principle, for any strategy, there exists at least one configuration in which
there are dn(2n−1)

2n e = dn2 e incorrect answers. Since n− d
n
2 e = bn2 c, a strategy can guarantee

at most bn2 c correct answers. Therefore, HATS(Kn, 2) ≤ bn2 c.

An alternate proof uses expected value. Since each person is correct in exactly 1
2 of the

configurations, the expected value of the amount of correct answers for any strategy is n
2 , by

the linearity of expectations. Therefore, if there exists a configuration in which a strategy
produces more than n

2 correct answers, there must be a configuration that produces less than
n
2 correct answers. This proves that HATS(Kn, 2) ≤ bn2 c.

2.1.2 Any number of colors, any number of people
A further generalization of problems is when the number of colors is arbitrary and the number
of people are also arbitrary. These are problems in the form of HATS(Kn, k). A strategy for
this problem is to split the n people into cliques of k people. Then, each person in a clique
would assume that the sum of hat colors in that clique is a different number (mod k). Since
the cliques are k in size, and there are only k colors, this covers all possible sums (mod k).
Therefore, each clique guarantees 1 correct answer. Since there are bn

k
c cliques, this strategy

guarantees bn
k
c correct answers.

Example 2.2
Consider HATS(K5, 3). Let the 5 people be Ada, Bob, Cam, Dan, and Edd. Let the
colors be {0, 1, 2}. Since there are 5 people, there can only be 1 clique of size 3. Let that
clique be Ada, Bob, and Cam.

Ada

Bob Cam

Dan Edd

Let s = h(Ada)+h(Bob)+h(Cam). Ada would assume that s ≡ 0 (mod 3), Bob assumes
s ≡ 1 (mod k), and Cam assumes s ≡ 2 (mod k). Dan and Edd’s answers do not matter.
Since the clique covers all possible values of s (mod 3), one of them must be correct in
any configuration of their hats. So, the strategy yields 1 correct answer, which is equal
to b5

3c.
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To see how this strategy works, suppose that all 5 people are wearing hat color 1. The
following table shows their strategy. Ada guesses her hat color correctly.

Ada Bob Cam
Assumed sum 0 1 2
Hat color 1 1 1
Other hats h(Bob) + h(Cam) = 2 h(Ada) + h(Cam) = 2 h(Ada) + h(Bob) = 2

Guess 1 1 1

Theorem 2.3 (HATS(Kn, k))

HATS(Kn, k) = bn
k
c

Proof. Lower bound: Since the strategy of separating persons into k-sized cliques results
in bn

k
c correct answers, HATS(Kn, k) ≥ bn

k
c.

Upper bound: Given an arbitrary strategy, consider an arbitrary person, Ada. Fix the hats
of everyone but Ada, which thus fixes her answer. There are now k possibilities for Ada’s hat
color. In only 1 of those k possibilities would Ada answer correctly. Therefore, Ada is correct
in 1

k
of all configurations. Since Ada was an arbitrary person, this can be generalized to all n

people; each of them is correct in 1
k
of all configurations. By the linearity of expectation, the

expected value for the number of correct answers is n
k
. If the strategy produces more than n

k

correct answers for one configuration, then it must produce fewer than n
k
correct answers for

another configuration. Therefore, HATS(Kn, k) ≤ n
k
, and since HATS(Kn, k) is an integer,

HATS(Kn, k) ≤ bn
k
c.

2.2 2 Colors, Tree Graphs, Cycle Graphs
2.2.1 Any graph, 2 colors

A further generalization of Theorem 2.1 (HATS(Kn, 2)) is HATS(G, 2), where G is an arbitrary
graph. A solution to this is to make as many pairs of vertices as possible, which is the
maximal pairing of G. This is formally the number of edges in the largest set of independent
edges.

Theorem 2.4 (HATS(G, 2))
HATS(G, 2) is the maximal pairing of G, proven in [2].

2.2.2 Tree graphs, 3+ colors
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Theorem 2.5 (HATS(T, 3))
HATS(T, 3) = 0, where T is a tree graph.

Proof. Consider HATS(T, 3). Consider colors c1 and c2. Suppose that T has one vertex, it is
obvious that HATS(T, 3) = 0 and that the lone vertex can be wearing either hat color c1 or
c2, in at least one case it would still be wrong. Otherwise select a vertex v in T , and delete
v. This creates some number, j, subtrees. Call these subtrees T1, T2, ..., Tj. Let r(Ti) be the
vertex in Ti solely adjacent to v. Let Γ1(Ti) and Γ2(Ti) be the strategy for the persons in
Ti if v is wearing c1 and c2, respectively. Let B1(Ti) be the set of configurations causing all
vertices in Ti to be incorrect using Γ1(Ti), and let C1(Ti) be the set of colors B1(Ti) assigns
to r(Ti). Similarly define B2(Ti) and C2(Ti), but with Γ2(Ti).

Example 2.6 (Notation)
Consider the tree in Figure 2. Let v be the gray vertex.

• The Ti would be the green subtree, the blue subtree, and the red subtree in whichever
order. But for the sake of the example, let the green subtree be T1, the blue subtree
be T2, and the red subtree be T3.

• The r(Ti) would be the vertex that is outlined black in Ti. So the blue vertex
outlined black is r(T2).

• If v were to be wearing hat color c1, then

– The green vertices (T1) would use the strategy Γ1(T1).

– If a configuration of hat colors were to cause Γ1(T1) to fail to produce at least
one correct answer:

∗ The configuration would be in B1(T1).

∗ The hat color r(T1) would be wearing in that configuration would be in
C1(T1).

• If v were to wear hat color c2, then

– The red vertices (T3) would use the strategy Γ2(T3).

– If a configuration of hat colors were to cause Γ2(T3) to fail to produce at least
one correct answer:

∗ The configuration would be in B2(T3).

∗ The hat color r(T3) would be wearing in that configuration would be in
C2(T3).
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Figure 2: A tree

Inductive Hypothesis: Given strategies Γ1(Ti) and Γ2(Ti), and a vertex vi in Ti, then
there exists a configuration of hats such that all vertices in Ti are incorrect (HATS(Ti, 3) = 0),
and that vi is either color a or color b.

Fact
Both |C1(Ti)| and |C2(Ti)| are at least 2

Proof. For the sake of contradiction, suppose that |C1(Ti)| < 2. Since there are only 3
colors, the complement of C1(Ti) has at least two colors, call these colors c3 and c4. By
the inductive hypothesis, given Γ1(Ti), r(Ti), and two colors c3 and c4, there exists a
configuration that causes all vertices in Ti to be incorrect. Therefore B1(Ti) is non-empty.
Since B1(Ti) is non-empty, and by the inductive hypothesis, r(Ti) is wearing either c3
or c4 in some hat configuration in B1(Ti). Therefore, either c3 or c4 is in C1(Ti). This
contradicts the earlier conclusion that both c3 and c4 are not in C1(Ti). Therefore,
|C1(Ti)| ≥ 2. Similarly it can be proven that |C2(Ti)| ≥ 2.

Since there are only 3 colors and both |C1(Ti)| and |C2(Ti)| are at least 2, C1(Ti) ∩ C2(Ti)
must have at least one element, ki. This means that regardless of which strategy (Γ1(Ti) or
Γ2(Ti)) is applied, then there exists a configuration in which r(Ti) is wearing a ki-colored hat,
and everyone in the Ti is incorrect.

Let the color, for each i, of r(Ti) be ki. Insodoing there exists a configuration in which all
the vertices in the Ti is incorrect given that v is wearing either c1 or c2. However, by also
setting the hat colors of all of the r(Ti), the answer of v is set. This answer cannot be both
c1 and c2. And so, place the hat color that is not the answer of v. Therefore, there exists a
configuration that causes all vertices in T to be incorrect.

The assumption, that the subtrees (Ti) formed by removing v cannot guarantee a correct
answer and some vertex (vi) in Ti is wearing hat color either a or b, implies that T cannot
guarantee a correct answer, and some vertex, v, in T is wearing hat color either c1 or c2. Also
if T has one vertex, v, T cannot guarantee a correct answer and v is wearing either hat color
c1 or c2. Therefore, by induction, for any tree T , no strategy can guarantee at least 1 correct
answer. Hence HATS(T, 3) = 0. A similar proof can be found in [2].
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2.2.3 Cycle graph, 3 colors
We define that a viable cycle is a cycle graph of size n where 3|n or n = 4.

Theorem 2.7 (HATS(Cn, 3))
Proven in [3], HATS(Cn, 3) = 1 if Cn is a viable cycle, and HATS(Cn, 3) = 0 if Cn is not
a viable cycle.

Additionally, combined with Theorem 2.5 (HATS(T, 3)), we know that HATS(G, 3) ≥ 1 if
and only if there exists a viable cycle.

3 Results
3.1 Hat Problems on Bipartite Graphs, 3 Colors

Consider the graph Km,n, the complete bipartite graph with independent sets of sizes m and
n. Each vertex represents a person. An edge between two people indicates that the two
connected people can see each other’s hat. There are 3 different colors of hats. All of the
people guess their hat color at once. Determine the strategy that maximizes the number of
correct guesses.

3.1.1 HATS(K3,3, 3)

a1 a2 a3

b1 b2 b3

Theorem 3.1 (HATS(K3,3, 3))
HATS(K3,3, 3) = 1.

Proof. Lower bound: Since a1, b1, a2, b2 form a cycle of length 4, they can guarantee 1
correct answer. Thus, HATS(K3,3, 3) ≥ 1.

Upper bound: We may use an expected value argument. There are 36 hat configura-
tions total. Consider some arbitrary person Ada. There are 35 hat configurations if we ignore
Ada. In each of these configurations, Ada’s guess is independent of his own hat color, and
therefore he will be correct in 1 out of 3 cases. Therefore, Ada will answer correctly in 35 hat
configurations. Since there are 6 people total, the total amount of correct answers is 6 ∗ 35.
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The expected amount of correct guesses is 6∗35

36 = 2. Let us fix the hat colors of b1, b2, b3.
Suppose that ai guesses h(ai). If the adversary places h(ai) on each of ai’s heads, then
there will be 3 correct answers. But since the expected amount of correct guesses is 2,
then there must exist a configuration where there are less than 2 correct answers. Thus,
HATS(K3,3, 3) ≤ 1, and our proof is complete.

3.1.2 HATS(Km,n, 3)

Theorem 3.2 (HATS(Km,n, 3))
HATS(Km,n, 3) = bmin(m,n)

2 c.

Proof. Lower Bound: We may divide the people into independent cycles of length 4, each
of which guarantees 1 correct answer. Each cycle is formed by taking 2 people from each
group. Whichever group runs out of people first will determine the amount of correct answers.
Therefore, using this strategy, we find HATS(Km,n, 3) ≥ bmin(m,n)

2 c.

Upper Bound: Without loss of generality, we will let m ≤ n. So, our new goal is to show
that HATS(Km,n, 3) ≤ bm2 c.

Consider when all people in the m group are wearing a red hat (the “Red Case”). Now, the
guesses of the n group are determined. Let’s also consider when all people in the m group
are wearing a blue hat (the “Blue Case”). Again, the guesses of the n group are determined.

Consider some arbitrary person in the n group, Ada. Suppose Ada guesses the color rada
in the Red Case and sada in the Blue Case. Even though rada and sada are not necessarily
distinct, note that there exists a color tada that Ada does not guess in the Red Case or Blue
Case. We can apply this logic to every person in the n group. Let us place all of these t’s on
the n group’s heads, so that they will all be wrong in both the Red Case and the Blue Case.

Therefore, in the Red Case and the Blue Case, the only people who are correctly guessing
their hats are in the m group. Also, note that they must guess the same thing in both cases,
since the same hats are on the n group’s heads. So, by the pigeonhole principle, the amount
of correct answers ≤ bm2 c in either the Red Case or the Blue Case. The adversary will choose
the appropriate case, and thus HATS(Km,n, 3) ≤ bm2 c, as we wanted to show.

Example 3.3 (K4,5)
We’ll walk through the proof for specific m,n. To create the Red Case, we put red hats
on all people in the smaller group.
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a1 a2 a3 a4

b1 b2 b3 b4 b5

Green!

Figure 1. This shows the Red Case. Let’s suppose b2 guesses green in this situation.

a1 a2 a3 a4

b1 b2 b3 b4 b5

Blue!

Figure 2. This shows the Blue Case. Let’s suppose b2 guesses blue in this situation.

In both the Red Case and the Blue Case, b2 will not guess red. Therefore, the adversary
places a red hat on his head. The same can be done for all other bi. Therefore, none of bi
will guess correctly, no matter it’s the Red Case or the Blue Case. Additionally, each ai
must guess the same thing in the Red Case as in the Blue Case, because they see the
same hat colors on the b people.

The best case scenario for the ai’s (and all of the people) is to have 2 guess red and the
other 2 guess blue, so that they will have 2 correct. If 1 guesses red and 3 guess blue,
then the hatter will simply pick the Red Case, and there will only be 1 correct answer.
So, this is not their optimal strategy. Therefore, the maximum amount of correct answers
is b4

2c = 2, as desired.

The people also have a strategy to guarantee 2 correct answers, because there are 2 cycles
of length 4: {a1, b1, a2, b2}, {a3, b3, a4, b4}.

Thus, HATS(K4,5, 3) = 2.
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3.2 A Line of Sages Generalized
3.2.1 Problem Statement

Suppose there are n people standing in a line, where person i can see the hats of persons
i+ 1, i+ 2, · · · , n. The hat colors are 0, 1, · · · , k; each color may be used either once or not at
all. The people can guess in any order they want. No person can repeat a previous person’s
guess. Develop a strategy that maximizes the amount of correct guesses.

3.2.2 Notation
First, we introduce HAT notation for the Line of Sages. This type of problem will be
denoted by HATLS(n, k), where n is the number of people, and k is the number of colors.
A paper by Tanya Khovanova [1] shows that HATLS(n, n+ 1) = n− 1. We conjecture that
HATLS(n, k) = n− 1, but we have only proven this for n = 3. (The proof for n = 2 is simple–
the first person just says the hat color 1 before the next person, and the next person now
knows their own hat color.)

3.2.3 Example: 3 people, 5 colors
We begin by creating person 1’s strategy. Consider the 20 possibilities that person 1 may
see. The first number in the ordered pair represents person 2’s hat color; the second number
represents person 3’s hat color.

(1,0) (2,0) (3,0) (4,0)
(0,1) (2,1) (3,1) (4,1)
(0,2) (1,2) (3,2) (4,2)
(0,3) (1,3) (2,3) (4,3)
(0,4) (1,4) (2,4) (3,4)

We want to guarantee that persons 2 and 3 can always call their hat color correctly. So,
person 1 cannot be ambiguous. For example, suppose if person 1 sees (2,1), then person 1
calls “5”; also, if person 1 sees (3,1), then person 1 calls “5” also. Now, when person 2 sees
that person 3 has hat color 2 and hears “5”, there are still 2 possibilities for what his own hat
color is, which is bad. We want to avoid this from happening, and thankfully, it is possible.
Here is one of many solutions.

(0,1,2) (0,2,1) (0,3,4) (0,4,3)
(1,0,3) (1,2,4) (1,3,0) (1,4,2)
(2,0,4) (2,1,3) (2,3,1) (2,4,0)
(3,0,2) (3,1,4) (3,2,0) (3,4,1)
(4,0,1) (4,1,0) (4,2,3) (4,3,2)
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This table is a condensed way to write each person’s strategy. Let x ∈ (1, 2, 3). Notice that
if we ignore the xth entry in each ordered triple, then the 20 ordered pairs that remain are
the 20 possibilities for what person x sees and hears. So, based on the ordered pair of what
person x sees and hears, he guesses the xth entry in the appropriate ordered triple. We call a
strategy that guarantees n− 1 correct answers to be a successful strategy.

3.2.4 The General Problem for k = n+ 2

So, we have boiled the line of sages problem into a simpler problem. Let x ∈ (1, 2, · · · , n).
Find (n+2)!

3! ordered n-tuples such that if we remove the xth entry in each ordered n-tuple,
then the (n+2)!

3! ordered (n − 1)-tuples that remain are all of the possibilities that person
x may see and hear. In other words, the (n− 1)-tuples are all (a1, a2, · · · , an−1) such that
(i 6= j =⇒ ai 6= aj) and ai ∈ (1, 2, · · · , n+ 2).

3.2.5 Using Latin Squares to solve n = 3

Theorem 3.4
HATLS(3, k) = 2.

Consider the problem of 3 people, 5 colors. We would like to make 20 3-tuples such that
when the ith element of each tuple is removed, the remaining 2-tuples are distinct. In other
words, we would like to fill in the 20 blanks here. Note that if any 2 numbers in the same
row are the same, then when the 1st element of each tuple is removed, there will be some
identical 2-tuples. Similarly, if any 2 numbers int he same column are the same, then when
the 2nd element of each tuple is removed, there will be some identical 2-tuples.

(1,0, ) (2,0, ) (3,0, ) (4,0, )
(0,1, ) (2,1, ) (3,1, ) (5,1, )
(0,2, ) (1,2, ) (3,2, ) (4,2, )
(0,3, ) (1,3, ) (2,3, ) (4,3, )
(0,4, ) (1,4, ) (2,4, ) (3,4, )

Seeing a form like this suggests converting this into a Latin square that we have to fill in:

0
1

2
3

4

As an example, look at the cell in the top right, note that either a 2, 3, or 4 can be placed in
that cell in the strategy table, as well as in the Latin square. This suggests that the problem



A Line of Sages Generalized 15

of filling in a k by k Latin square, where the diagonal is already filled as above, is isomorphic
to the Line of Sages problem for 3 people and k colors.

For odd k, the Latin square has a linear construction. If we create a "coordinate axis" around
the Latin square, then we can fill in the cells by the function f(x, y) ≡ 2x− y (mod k). The
case for k = 5 colors is shown below.

x 1 2 3 4 5
y
1 1 3 5 2 4
2 5 2 4 1 3
3 4 1 3 5 2
4 3 5 2 4 1
5 2 4 1 3 5

x 0 1 2 3 4
y
0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

For even k, no linear construction is possible. So, we will turn to abstract algebra.

Definition 3.5 (Quasigroup)
A quasigroup is a set S and a function f such that:

• a, b ∈ S =⇒ f(a, b) ∈ S. (Closure)

• There is only one solution x to f(x, a) = b.

• There is only one solution y to f(a, y) = b.

A quasigroup is idempotent if f(a, a) = a for all a.

The multiplication table of a quasigroup is a Latin square.

We would like to show that there exists an idempotent quasigroup, where the set S is the
integers 0, 1, · · · , k−1. (Note that we are going from 0 to k−1 instead of from 1 to k because
this makes expressions with (mod k) more accurate.)

We now prove that there exists an idempotent quasigroup of any even order with a construction.
The construction is as follows.

First we take the Latin square of order k−1, where f(x, y) = 2x−y. We will take k = 5 as an
example. First, we will show that the colored numbers are an arrangement of 0, 1, · · · , k − 1.
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0 2 4 1 3
4 1 3 0 2
3 0 2 4 1
2 4 1 3 0
1 3 0 2 4

5

The colored numbers are in cells of the form (i, i + 1 (mod k)), where i ∈ 0, 1, · · · , k − 1.
The number in the cell is

f(i, i+ 1 (mod k)) ≡ 2i− (i+ 1) ≡ i− 1 (mod k)

As i ranges from 0 to k− 1, i− 1 (mod k) also ranges from 0 to k− 1. Therefore the colored
numbers are an arrangement of 0, 1, · · · , k − 1. What this means is that we can now copy
these colored numbers into a new row and column, and that new row and column will still be
Latin:

0 2 4 1 3 2
4 1 3 0 2 3
3 0 2 4 1 4
2 4 1 3 0 0
1 3 0 2 4 1
1 2 3 4 0 5

Finally, we replace the original colored numbers with k’s (in this case, 5’s) and also put a
k in the lower right corner. This concludes the construction of an even order idempotent
quasigroup, also known as a Latin square with 0, 1, · · · , k as the main diagonal. Thus, we
have shown that HATLS(3, k) ≥ 2.

0 5 4 1 3 2
4 1 5 0 2 3
3 0 2 5 1 4
2 4 1 3 5 0
5 3 0 2 4 1
1 2 3 4 0 5

Also, we know HATLS(3, k) ≤ 2, because the adversary can always force the first person in
line to be incorrect. Thus, we have shown that HATLS(3, k) = 2, as desired.
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3.2.6 Computer Results
The Line of Sages problem has a better time complexity than the HATS(G, k) problems.
Therefore, we created a Java program that counts the number of possible successful strategies
for HATLS(n, k).

This table shows the number of possible successful strategies for n people and k colors.

The row for n = 2 people is actually the same as the number of derangements of k numbers.
A derangement is a permutation of {0, 1, 2, · · · , k} such that no number stays in its original
spot.

The strategy notation, which is simply k ordered pairs, makes the isomorphism to derange-
ments apparent. We start by writing all possible (n − 1)-tuples, which is {0, 1, 2, · · · , k}.
Then, we fill in the spaces such that no ordered pairs tell the people to guess the same number.
In other words– the strategy is a derangement of {0, 1, 2, · · · , k}!

(0, )
(1, )
(2, )
(3, )
(4, )

Another inspired result from the computer results is that the number of successful strategies
for HATLS(n, k) is divisible by k−n. Consider the tuple (0, 1, 2, · · · , n−1, ) in the strategy.
There are k − n possible numbers to fill in. Due to symmetry, for each of the k − n possible
numbers, there are the same number of strategies after this tuple is filled in. Therefore, the
number of successful strategies is divisible by k − n.



A Line of Sages Generalized 18

Our program suggests that HATSLS(n, k) = n − 1 in general, since a successful strategy
exists for all values of (n, k) where the program terminated. However, for larger (n, k), the
program takes far too long. For example, HATLS(3, 7) took 1 day to run, and we believe
HATLS(3, 8) will take the order of months to terminate.

3.2.7 Application to Graph Theory
The Line of Sages problem is also isomorphic to finding the maximal independent set of
a graph. Each vertex is a n-tuple, and vertices share an edge if having both in the same
strategy would create an ambiguity. This is equivalent to a Hamming graph for n = 2, where
vertices share an edge if they differ by exactly one coordinate. In the figure below, the red
vertices are an independent set, and thus form a successful strategy for HATLS(2, 4).

(0, 1)

(0, 3)

(0, 2)

(1, 2)

(1, 0)

(1, 3)

(2, 3)

(2, 1)

(2, 0)

(3, 0)

(3, 2)

(3, 1)

So, the Line of Sages problem is isomorphic to finding an independent set, as well as finding
Latin Squares (or n-dimensional cubes), an interesting result.
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